3 research outputs found

    Artificial intelligence in musculoskeletal ultrasound imaging

    Get PDF
    Ultrasonography (US) is noninvasive and offers real-time, low-cost, and portable imaging that facilitates the rapid and dynamic assessment of musculoskeletal components. Significant technological improvements have contributed to the increasing adoption of US for musculoskeletal assessments, as artificial intelligence (AI)-based computer-aided detection and computer-aided diagnosis are being utilized to improve the quality, efficiency, and cost of US imaging. This review provides an overview of classical machine learning techniques and modern deep learning approaches for musculoskeletal US, with a focus on the key categories of detection and diagnosis of musculoskeletal disorders, predictive analysis with classification and regression, and automated image segmentation. Moreover, we outline challenges and a range of opportunities for AI in musculoskeletal US practice.11Nsciescopu

    Angular Velocity Measurement Range Extension in the Presence of Gyro Saturation

    No full text
    This technical note addresses a problem of compensating inertial sensor saturation. Low-cost gyroscope suffers from limited dynamic range which can lead to a considerable accumulated error when neglected. To overcome this significant drawback, we propose a novel algorithm to compensate for the saturated data of MEMaster gyroscope with the help of a nonlinear disturbance observer and addition of a minimum number of accelerometers. By using the knowledge of the plant model fully, a nonlinear disturbance observer is designed to obtain a force estimation without a force sensor. Through this estimate, the translational motion of the systemlinear acceleration can be derived with simple mathematical operations. With the translational motion information, the rotational motion of the body is obtained through calibration of tri-axis accelerometer measurements of the original IMU and one additional uni-axial accelerometer. Moreover, a Matlab simulation-based approach to quadrotor dynamics has been used to verify the feasibility of the proposed algorithm. Under the assumption that the external force acting on the body is a constant, we were able to overcome the strict constraint of feasible accelerometer configurations of conventional gyro-free techniques. By utilizing low-cost, power-efficient accelerometers, and with the help of a disturbance observer, a very practical, space-efficient, and cost-effective gyroscope data saturation reconstruction method is presented.|๊ด€์„ฑํ•ญ๋ฒ•์‹œ์Šคํ…œ(Inertial Navigation System, INS)์€ ์šด๋ฐ˜์ฒด์˜ ์šด๋™์„ ๊ฐ์ง€ํ•˜๋Š” ๊ด€์„ฑ์„ผ์„œ(์ž์ด๋กœ ๋ฐ ๊ฐ€์†๋„๊ณ„) ์ถœ๋ ฅ์œผ๋กœ๋ถ€ํ„ฐ ์šด๋ฐ˜์ฒด์˜ ์†๋„, ์œ„์น˜ ๋ฐ ์ž์„ธ ๋“ฑ์˜ ๊ณ„์‚ฐํ•˜๋Š” ์žฅ์น˜๋กœ, ๊ตฐ์‚ฌ ๋ถ„์•ผ๋Š” ๋ฌผ๋ก  ์šฐ์ฃผ์„ , ์ž์œจ ์ž๋™์ฐจ, ๋ฌด์ธ๋กœ๋ด‡ ๋“ฑ ์‚ฐ์—… ์ „ ๋ถ„์•ผ์— ๊ฑธ์ณ ์ ์šฉ์˜์—ญ์ด ํ™•๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ๊ด€์„ฑ ์„ผ์„œ ์ค‘ ๊ฐ์†๋„๋ฅผ ์ธก์ •ํ•˜๋Š” ์ž์ด๋กœ์Šค์ฝ”ํ”„๋Š” ๊ฐ€์†๋„์„ผ์„œ์— ๋น„๊ตํ•˜์—ฌ ์ „๋ ฅ ์†Œ๋น„๊ฐ€ ๋†’๊ณ , ๋™์  ๋ฒ”์œ„๊ฐ€ ๋‚ฎ์œผ๋ฉฐ, ๊ณ ๊ฐ€์ด๋‹ค. ํŠนํžˆ ์ €๊ฐ€์˜ ์ž์ด๋กœ์Šค์ฝ”ํ”„๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋™์  ๋ฒ”์œ„๊ฐ€ ์ข์•„์ง€๊ธฐ ๋•Œ๋ฌธ์— ํฌํ™” ๋ฌธ์ œ๊ฐ€ ํ”ํžˆ ์ผ์–ด๋‚˜ ์œ„์น˜ ์ถ”์ •์— ์˜ค์ฐจ๊ฐ€ ๋ˆ„์ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„์„ ํ˜• DOB์™€ ์ตœ์†Œํ•œ์˜ ๊ฐ€์†๋„๊ณ„๋ฅผ ์ถ”๊ฐ€ํ•จ์œผ๋กœ์จ MEMaster ์ž์ด๋กœ์Šค์ฝ”ํ”„์˜ ํฌํ™” ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด์™„ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์†Œ๊ฐœํ•œ๋‹ค. ํ”Œ๋žœํŠธ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ง€์‹์„ ํ™œ์šฉํ•˜์—ฌ ์ถ”๊ฐ€์ ์ธ ํž˜ ์„ผ์„œ์—†์ด ์ƒ์ˆ˜ ์™ธ๋ ฅ์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋น„์„ ํ˜• ์™ธ๋ž€ ๊ด€์ธก๊ธฐ๋ฅผ ์„ค๊ณ„ ํ•˜์˜€๊ณ , ์‹œ์Šคํ…œ์˜ ๋ณ‘์ง„ ์šด๋™์„ ํ‘œํ˜„ํ•˜์—ฌ ์„ ํ˜• ๊ฐ€์†๋„๋ฅผ ์ถ”๊ฐ€์ ์ธ ์ˆ˜ํ•™ ์—ฐ์‚ฐ์„ ํ†ตํ•ด ์–ป์—ˆ๋‹ค. ์™ธ๋ž€์ด ์ƒ์ˆ˜๋ผ๋Š” ๊ฐ€์ • ํ•˜์— ์„ ํ˜• ๊ฐ€์†๋„๋ฅผ ์–ป์Œ์œผ๋กœ์จ ์‹œ์Šคํ…œ์˜ ์ž์œ ๋„๊ฐ€ ์ ˆ๋ฐ˜์ด๋˜๋ฏ€๋กœ ์›๋ž˜์˜ 3-์ถ• ๊ฐ€์†๋„๊ณ„์™€ ํ•œ๊ฐœ์˜ 1-์ถ• ๊ฐ€์†๋„๊ณ„์˜ ์ถ”๊ฐ€๋งŒ์œผ๋กœ๋„ ๊ฐ•์ฒด์˜ ์ „์ฒด ๋™์ž‘์„ ํ‘œํ˜„ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด ๋ฐฉ๋ฒ•์˜ ๊ฐ€์žฅ ํฐ ์žฅ์ ์€ ๊ธฐ์กด์˜ ์ž์ด๋กœํ”„๋ฆฌ ๊ธฐ์ˆ ๊ณผ ๋‹ฌ๋ฆฌ ๊ฐ€์†๋„๊ณ„ ๋ฐฐ์น˜์˜ ์ œ์•ฝ์ด ํฌ๊ฒŒ ์ค„์–ด ๋“ ๋‹ค๋Š” ์ ๊ณผ, ๊ฐ ๊ฐ€์†๋„๊ฐ€ ์•„๋‹Œ ๊ฐ์†๋„๋ฅผ ์–ป์—ˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ˆ„์  ์˜ค์ฐจ๋Š” ํ˜„์ €ํ•˜๊ฒŒ ๊ฐ์†Œํ•˜์—ฌ ๋‹จ์‹œ๊ฐ„์— ๊ฑธ์ณ ์ •ํ™•ํ–ˆ๋˜ ์ด์ „ ๊ตฌ์„ฑ์˜ ๋‹จ์ ์„ ๊ทน๋ณตํ•˜์˜€๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, ์ตœ์†Œ๋Ÿ‰์˜ ๊ฐ€์†๋„๊ณ„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ€์žฅ ์‹ค์šฉ์ ์ด๊ณ  ๊ณต๊ฐ„ ํšจ์œจ์ ์ด๋ฉฐ ๋น„์šฉ ํšจ์œจ์ ์ธ ์ž์ด๋กœ์Šค์ฝ”ํ”„ ํฌํ™” ๋ณด์ƒ ๋ฐฉ๋ฒ•์ด ์ œ์‹œ๋˜์—ˆ๋‹ค.open1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Questions 3 1.3 Summary of Claimed Contributions 4 2 Background Theory 5 2.1 Micro-electromechanical systeMaster (MEMaster) 5 2.1.1 MEMaster Accelerometers 5 2.1.2 MEMaster Gyroscope 7 2.2 IMU-Working Principle 9 2.2.1 Tracking Orientation 10 2.2.2 Tracking Position 12 2.3 Introduction of Disturbance Observer 13 2.3.1 Linear Minimum-Phase Disturbance Observer 13 2.3.2 Linear Non-minimum Phase Case 15 2.3.3 Non-linear Disturbance Observer 16 3 Configuration Design and Feasibility 21 3.1 Accelerometer Configuration Equation 21 3.2 Feasibility of Accelerometer Configuration 24 3.3 Limitation of Existing Configurations 25 3.3.1 A Cube Configuration 25 3.3.2 Eco-IMU 27 4 Angular Velocity Measurement Range Extension 31 4.1 Proposed Algorithm 31 4.2 System Implementation 32 4.2.1 Nonlinear Disturbance Observer Design for UAV 34 4.2.2 Angular Velocity Estimation 36 5 Numerical Results 39 6 Conclusion 47MASTERdCollectio
    corecore